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Fuzzy Group Decision Making With Incomplete
Information Guided by Social Influence
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Abstract—A promising research area in the field of group deci-
sion making (GDM) is the study of interpersonal influence and its
impact on the evolution of experts’ opinions. In conventional GDM
models, a group of experts express their individual preferences on
a finite set of alternatives, then preferences are aggregated and
the best alternative, satisfying the majority of experts, is selected.
Nevertheless, in real situations, experts form their opinions in a
complex interpersonal environment where preferences are liable
to change due to social influence. In order to take into account the
effects of social influence during the GDM process, we propose a
new influence-guided GDM model based on the following assump-
tions: experts influence each other and the more an expert trusts in
another expert, the more his opinion is influenced by that expert.
The effects of social influence are especially relevant to cases when,
due to domain complexity, limited expertise or pressure to make a
decision, an expert is unable to express preferences on some alter-
natives, i.e., in presence of incomplete information. The proposed
model adopts fuzzy rankings to collect both experts’ preferences
on available alternatives and trust statements on other experts.
Starting from collected information, possibly incomplete, the con-
figuration and the strengths of interpersonal influences are eval-
uated and represented through a social influence network (SIN).
The SIN, in its turn, is used to estimate missing preferences and
evolve them by simulating the effects of experts’ interpersonal in-
fluence before aggregating them for the selection of the best alter-
native. The proposed model has been experimented with synthetic
data to demonstrate the influence driven evolution of opinions and
its convergence properties.

Index Terms—Fuzzy preference relation, group decision making
(GDM), social influence.

Manuscript received January 7, 2017; revised April 7, 2017 and July 7, 2017;
accepted August 14, 2017. Date of publication August 24, 2017; date of current
version May 31, 2018. This work was supported by the FEDER funds under
Grant TIN2016-75850-R. (Corresponding author: Enrique Herrera-Viedma.)

N. Capuano is with the Department of Information, Electric Engineering
and Applied Mathematics, University of Salerno, 84084 Fisciano, Italy (e-mail:
ncapuano@unisa.it).

F. Chiclana is with the School of Computer Science and Informatics, Faculty
of Technology, De Montfort University, Leicester LE1 9BH, U.K. (e-mail:
chiclana@dmu.ac.uk).

H. Fujita is with the Faculty of Software and Information Science, Iwate
Prefectural University, Iwate 020-0193, Japan (e-mail: HFujita-799@acm.org).

E. Herrera-Viedma is with the Department of Computer Science and Ar-
tificial Intelligence, University of Granada, Granada 18071, Spain (e-mail:
viedma@decsai.ugr.es).

V. Loia is with the Department of Management and Innovation Systems,
University of Salerno, 84084 Fisciano (SA), Italy (e-mail: loia@unisa.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2017.2744605

I. INTRODUCTION

GROUP decision making (GDM) is a process by which a
group of experts collectively makes a choice among a fi-

nite set of available alternatives. GDM has been widely studied
since it has applications in many fields. For this reason, many
different approaches have been proposed so far for the repre-
sentation of experts’ opinion, aggregation, selection of the best
alternative, and for consensus reaching [1]–[5]. In a GDM pro-
cess, experts are usually let free to interact and discuss each
other exchanging opinions. During these interactions, experts
with a wider background, experience, and knowledge are capa-
ble of influencing other experts. Therefore, after a discussion,
the preferences of each expert may undergo a modification due
to social influence. Influence modeling and the appraisal of its
effect on opinion change has been studied in [6] and [7]. Influ-
ence is capable of playing a key role in decision making; despite
that, the introduction of GDM models that takes into account
social influence have just recently been proposed in [8] and [9].

Following these works, this paper presents an alternative
influence-guided GDM model that, instead of considering pre-
defined levels of social influence, models influence based on
available information regarding experts’ interpersonal trust.
Elaborating on the definitions provided in [10], the concept
of trust is interpreted in the proposed framework as the belief
of an expert in the capability of another expert in finding the
correct solution to a specific problem.

Interpersonal trust has been already used to improve the out-
comes of a GDM process. According to the models proposed
in [11] and [12], each expert is explicitly asked to express their
fuzzy trust statements on the other experts. Such statements are
then aggregated and a global level of trust is calculated, associ-
ated with each expert and used to weight their opinions in the
aggregation step. Instead, we propose to use trust statements to
let the opinions of each expert evolve by incorporating elements
captured from the opinion expressed by other experts he trusts.

Especially in the case of uncertainty, it is generally believed
that people are influenced by the opinions of people they trust.
Information regarding the level of interpersonal trust among
the experts is then collected together with opinions on prob-
lem alternatives (that may be incomplete). According to [9],
incomplete opinions are then completed with data injected from
trusted experts. In addition with respect to [9], such opin-
ions are further modified by simulating their evolution due
to social influence. It is also demonstrated that, under certain
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assumptions, the evolution of opinions due to influence con-
verges to a final collective opinion. If assumptions are not met,
standard aggregation approaches are used to select the best al-
ternative.

The paper is organized as follows: Section II introduces
some background concepts on GDM and related topics while
Section III discusses the proposed methodology. Section IV
presents two in silico simulations of the proposed methodology
that illustrate its operational steps and properties as well as its
advantages and peculiarities with respect to alternative methods.
Conclusions are pointed out in Section V.

II. PRELIMINARIES ON GROUP DECISION MAKING

A GDM problem is characterized by a group of experts
E = {e1, . . . , em} , each with their own knowledge, ideas, expe-
rience, and motivation, who express their preferences on a finite
set of alternatives X = {x1, . . . , xn} to achieve a common so-
lution. Expert preferences can be expressed in form of rankings
[13] (alternatives are ordered from the best to the worst), util-
ity vectors [14] (a utility value is assigned to each alternative),
fuzzy estimates [15] (a linguistic evaluation, translated into a
fuzzy number, is assigned to each alternative), preference rela-
tions [16] (for every pair of alternatives, a preferred one is se-
lected), or fuzzy preference relations (FPR) [17], [18] (a degree
of preference for each alternative over any other is assigned).

Among the existing models, FPRs are one of the most dif-
fused. They ensure a high degree of expressiveness in the defini-
tion of preferences and, at the same time, translation techniques
are available to convert preference information from every other
representation model [19], [20]. A FPR P on a set of alterna-
tives X can be formally defined as a fuzzy set on X × X with a
membership function µP : X × X → [0, 1] so that [21]:

µP
(
xi , x j

)

=






1 if xi is definitely preferred to x j ,

x ∈ (0.5, 1) if xi is slightly preferred to x j ,

0.5 if xi and x j are evenly preferred,

y ∈ (0, 0.5) if x j is slightly preferred to xi ,

0 if x j is definitely preferred to xi .

(1)

A FPR P can be represented as a n × n matrix P = (pi j ) ,

where pi j = µP (xi , x j ). A FPR satisfying the additive reci-
procity property so that pi j + p ji = 1∀i, j ∈ {1, . . . , n} is said
to be reciprocal. This means that the preference relation is
asymmetric, i.e., if xi is preferred to x j then x j is not pre-
ferred to xi and, as a consequence, pii = 0.5∀i ∈ {1, . . . , n}
(i.e., any alternative is never preferred to itself). According
to [22], a FPR satisfying the additive transitivity property,
pi j + p jk + pki = 1.5∀i, j, k ∈ {1, . . . , n}, is said to be addi-
tive consistent. Additive transitivity is frequently used for re-
pairing inconsistencies or to estimate missing preferences.

Once experts have expressed their preferences, m individ-
ual FPRs P1, . . . , Pm are available where Pk = (pki j ) for
k ∈ {1, . . . , m} and i, j ∈ {1, . . . , n}. Several aggregation rules
have been proposed so far to obtain a collective FPR P from a set
of individual ones. Among them, the Ordered Weighted Average
(OWA) family of operators [23], [24] is often adopted. A OWA

Fig. 1. Example of proportional fuzzy quantifiers.

operator of dimension m is a function OWA : [0, 1]m → [0, 1]
associated with a list of weights W = (w1, . . . , wm) ∈ [0, 1]m

such that
∑m

k = 1 wk = 1. Let (p1, . . . , pm) be a list of prefer-
ence values to aggregate, the OWA operator is defined as

OWA (p1, . . . , pm) =
m∑

k = 1

wk pσ (k) (2)

where σ : {1, . . . m} → {1, . . . m} is a permutation function
such that pσ (k) ≥ pσ (k + 1) for each k ∈ {1, . . . , m − 1}. Thus,
the OWA collective preference pi j is obtained as: pi j =
OWA(p1i j , . . . , pmi j ) for i, j ∈ {1, . . . , n}.

The behavior of an OWA operator strictly depends on the used
weight vector. In [26], Chiclana et al. proposed to initialize the
weight vector starting from a nondecreasing proportional fuzzy
quantifier to let OWA assume the behavior of soft majority. In
this way, it is possible to obtain a collective evaluation in which
the opinions of most of the experts involved in the decision
problem are considered.

A proportional fuzzy quantifier Q is as fuzzy subset of the unit
interval [0, 1], where for any y ∈ [0, 1], µQ(y) represents the de-
gree to which the proportion y is compatible with the meaning of
the quantifier Q [27], [28]. A nondecreasing proportional fuzzy
quantifier satisfies the additional property: µQ(y1) ≥ µQ(y2)
when y1 > y2. Fig. 1 shows several examples of nondecreasing
proportional fuzzy quantifiers with membership functions:

µQ (y) =






0 if y < a
(y − a) / (b − a) if a ≤ y ≤ b
1 if y > b.

(3)

with a, b, y ∈ [0, 1]. For example, the parameters (a, b) of the
quantifiers shown in Fig. 1 are the following: (0, 1), (0, 0.5),
(0.3, 0.8), and (0.5, 1) respectively. The quantifier to be applied
should be selected to reflect the fusion strategy that the decision
makers would apply. Starting from the selected quantifier, the
weights of an OWA operator of dimension m are computed as



1706 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 26, NO. 3, JUNE 2018

follows [23]:

wk = µQ

(
k
m

)
− µQ

(
k − 1

m

)
; k ∈ {1, . . . , m} . (4)

After having selected a nondecreasing proportional fuzzy
quantifier Q, extending the notation to matrices, we can write
P = OWAQ (P1, . . . , Pm) where OWAQ is the OWA operator
initialized with the weights coming from the quantifier Q. Al-
ternative aggregation rules, based on OWA and implementing
the concept of soft majority have been described in [25].

Once the individual FPRs have been aggregated, the available
alternatives must be ranked from best to worst by associating a
score value φ(xi ) to any xi ∈ X . In [26], the Quantifier Guided
Dominance Degree (QGDD) was defined to calculate the dom-
inance that one alternative has over all the others in a fuzzy
majority sense:

φ (xi ) = OWAQ
(

pi j ; j = 1, . . . , n; j (= i
)
. (5)

In the same paper, a Quantifier Guided Non-Dominance De-
gree was defined to calculate the degree which a given alternative
is not dominated by a fuzzy majority of the remaining ones. In-
stead, in [21], the score value of each alternative xi is calculated
in terms of Net Flow, i.e., the difference between the degree of
preference of xi over all the other alternatives and the degree of
preference of all the other alternatives over xi .

A. Dealing With Incomplete Information

Sometimes, due to domain complexity, limited expertise or
pressure to make a decision, it may be difficult or even im-
possible for an expert to express a preference on every pair of
alternatives. This results in incomplete FPRs where missing val-
ues have to be estimated. Several methods have been proposed
so far for this purpose, like the ones in [20] and [29]–[35].
In particular, we focus on the model discussed in [30] because
missing values are estimated combining additive reciprocity and
additive transitivity properties.

When an FPR P is additive consistent, an unknown element
can be obtained combining known elements of P . Even when
user-defined FPRs are partially consistent, additive transitivity
can be used to identify missing values that are as consistent as
possible with the defined ones through a set of estimators. Given
an unknown value pi j , the following partial consistency-based
estimated values can be computed using alternative k:

εk1(pi j ) = pik + pk j − 0.5 ∀ k : pik and pk j are defined;

εk2(pi j ) = pk j − pki + 0.5 ∀ k : pki and pk j are defined;

εk3(pi j ) = pik − p jk + 0.5 ∀ k : pik and p jk are defined.

(6)

A missing value pi j can be estimated by averaging all partial
consistency-based estimated values as follows:

ε(pi j ) =
∑n

k=1;k (=i ;k (= j

(
εk1(pi j ) + εk2(pi j ) + εk3(pi j )

)

3 (n − 2)
. (7)

The generation of missing values is done in several itera-
tions. In each iteration, new values are generated based on those
previously known. When new values cannot be generated, the
process stops.

The method uses the preferences expressed on a given alter-
native to infer missing preferences for the same alternative. If
no preferences are available for a given alternative, no estimated
value can be generated for it. This happens when, to estimate
some pi j for i, j ∈ {1, . . . , n}, both pik and pk j are undefined
for all k. In [36], Alonso et al. refer to this case as an ignorance
situation and suggest to use seed values to initialize missing
preferences and, then, to apply an iterative process based on (6),
(7) to obtain the final estimates. Four different ways to obtain
seed values are proposed:

1) indifference: undefined preferences are initially set to 0.5;
2) alternative proximity: seed values are obtained from the

preference values given by the same expert to similar
alternatives;

3) collective seed value: seed values are chosen from the
collective FPR computed by aggregating partial individual
FPRs provided by the experts;

4) expert proximity: seed values are chosen from the FPRs
provided by the experts nearest to the expert whose FPR
has to be completed, distances between experts are com-
puted by averaging the absolute differences between de-
fined preferences.

The first approach is useful when there are no external sources
of information about the problem and when a high FPRs con-
sistency level is required. The second approach implies having
additional information on alternatives allowing to define a dis-
tance measure between them. The third and fourth approaches,
making the opinions of the experts closer, are useful when a fast
consensus is needed. In addition, the fourth approach is also
able to maintain high the FPRs consistency level.

B. Experts’ Importance, Consistency, and Trust

When individual FPRs are aggregated into the collective one,
it is possible to weight the contribution of each expert in order
to reflect their different backgrounds and levels of knowledge
about the problem. This is usually achieved by associating an
importance degree uk ∈ [0, 1] to each expert ek ∈ E and imple-
menting a specific aggregation operator, that appropriately takes
into account such importance degrees in deriving the collective
FPR [37]–[39]. In [37], the Induced OWA (IOWA) operator is
introduced for this purpose. With IOWA, the reordering of the
set of values to aggregate is induced by the reordering of a set
of values associated with them. Based on the same principle,
the Importance IOWA operator (I-IOWA) was defined in [38]
to consider the importance of each preference (i.e., that of the
expert expressing such preference) during the aggregation step.
This is elaborated below.

Let U = (u1, . . . , um) be the important degree of each expert
of E , (p1, . . . , pm) the list of preference values to aggregate
(where pk is expressed by expert ek), and Q a nondecreasing
proportional fuzzy quantifier, the I-IOWA operator is defined as
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follows:

I − IOWAQ ((p1, u1) , . . . , (pm, um)) =
m∑

k = 1

wk pσ (k) (8)

where σ : {1, . . . m} → {1, . . . m} is a permutation function
such that uσ (k) ≥ uσ (k + 1) for each k ∈ {1, . . . , m − 1} and the
kth weight wk is obtained as follows:

wk = µQ

(
S (k)
S (m)

)
− µQ

(
S (k − 1)

S (m)

)
; k ∈ {1, . . . , m}

(9)
where S (k) =

∑k
l = 1 uσ (k). Extending the notation to matrices,

given a set of individual FPRs P1, . . . , Pm and a vector of ex-
perts’ importance degrees U , the collective FPR P that takes
into account the importance of each expert can be obtained as
P = I − OWAQ ((P1, u1), . . . , (Pm, um)).

In some GDM models, the importance degree of each expert
is considered as known beforehand or provided by a reliable
source while, in other cases, it is obtained in another way. For
example, in [38], Chiclana et al. suggest to give more importance
to the experts that provide more consistent information. In such
models, a consistency index is calculated for each expert by
analyzing their individual FPRs, which are subsequently used
to build the vector U. Many consistency measures have been
defined so far for this purpose [40], although the most widely
used are based on the concept of additive transitivity property.

In [9], the importance of each expert is calculated based on
data coming from a social network. The tie strength between
pairs of experts is calculated through Social Network Analy-
sis (SNA) techniques by combining the number of common
connections with the number of direct interactions. Then, the
importance of an expert is obtained as the average strength of
his ties with other experts.

In [11] and [12], Chiclana et al. propose to use trust as a
measure of experts’ importance. Based on the history of past
actions and behavior, trust reflects the actual reputation of an
expert among his peers. Information about interpersonal trust is
obtained by analyzing data coming from a type of social network
in which the users explicitly express their opinion on other users
as fuzzy trust statements. Trust statement related to each expert
are aggregated and used to build the vector U . In particular, a
linear combination of the consistency index and the trust degree
of each expert is used to weight his FPR during the aggregation
step.

C. Social Influence and Opinion Change

A GDM process, from the experts’ point of view, only rarely
results in expressing own opinions and accepting or rejecting
the consensus to other’s opinion. In real situations, individuals
form their opinions in a complex interpersonal environment in
which preferences on available alternatives are liable to change
due to social influence.

In [9], social influence is defined as changes in individual’s
thoughts, feelings, attitudes, or behaviors resulting from inter-
action with another individual or a group. In the same paper,
the social influence among experts is calculated by combining

Fig. 2. SIN composed by 4-nodes.

the number of common connections with the number of direct
interactions over a social network.

The use of data coming from social networks to support the
decision making process is not new. In [41], SNA metrics are
used to measure interorganizational relationships with the aim
of enhancing a decision making process for project selection. In
[42], a consensus-based model based on SNA has been defined
to reconcile conflicts in the collaborative annotation of media
content. In [9], SNA metrics are used for the first time to estimate
social influence between experts. The obtained value is then used
to infer missing FPR values by combining values coming from
influencing experts.

According to [6] and [7], influence can be modelled through
a Social Influence Network (SIN): a directed graph between
the set of experts E and where each arc (ei , e j ) has a weight
wi j ∈ [0, 1] that represents the strength of the influence of the
j th expert on the i th one. Fig. 2 shows an example of SIN.

A SIN involving a set of experts E = {e1, . . . , em} can be
summarized by an m × m fuzzy adjacency matrix W = (wi j ).
In [6], it was suggested that the weights wi1, . . . , wim are di-
rectly chosen by the expert ei before he is informed of the
preferences expressed by the others, on the basis of the rela-
tive importance he assigns to the opinion of the various experts,
including himself. Selected weights must verify the normaliza-
tion property

∑m
j = 1 wi j = 1 for all i ∈ {1, . . . , m}, i.e., the

influences of peers on each expert sum to 1.
If y(1) is an m × 1 vector representing the initial experts’

opinions on a given alternative, it is supposed that, after hav-
ing interacted, this opinion vector will change to y(2) = W y(1)

due to interpersonal influence. If we suppose that each expert
is informed that the others have changed their opinion, it is rea-
sonable to expect that the expert will change again his opinion
according to the same principle. By iterating the process, it is
possible to obtain the experts’ opinion after t interactions as

y(t) = W y(t − 1). (10)

In [6], it was demonstrated that if there exists a positive integer
t so that every element in at least one column of W t is positive,
then m opinions are expected to converge to the same value. In
[7], it was suggested to also specify the susceptibility of each
expert ei to interpersonal influence as aii ∈ [0, 1]. Let y(1) be
the initial experts’ opinions, after t interactions, the updated
opinions is obtained iteratively as

y(t) = AWy(t − 1) + (I − A) y(1) (11)
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where A = diag(a11, . . . , amm) and I is the m × m identity ma-
trix. In other words, at each time, the current opinion of an expert
is obtained as a linear combination of his initial opinion and the
influenced opinion he had at the time immediately preceding. In
[7], it was demonstrated that, if the matrix I − AW is nonsingu-
lar and the process reaches an equilibrium, i.e., y(∞) = lim

t→∞
y(t)

exists, then

y(∞) = (I − AW)−1 (I − A) y(1). (12)

In [8], (11) and (12) were applied for the first time in a
GDM process where the experts provide opinions on a set of
alternatives X = {x1, . . . , xn} rather than on just one. For each
expert ei , the initial degree of preference y(1)

i j on each alternative
x j is calculated starting from expert’s individual FPR via the
application of the QGDD metric to all preference values of the
j th row of the corresponding FPR.

Then, the influence model is applied on each column of the
m × n matrix Y (1) = (y(1)

i j ) by extending (12) to matrices and
obtaining: Y (∞) = (I − AW)−1 (I − A)Y (1). The i th row of
Y (∞) represents the “influenced” preferences of the expert ei af-
ter having introjected his peers’ opinions. The I-IOWA operator
is then applied to aggregate such influenced preferences.

III. NEW INFLUENCE-GUIDED FUZZY MODEL FOR GDM

The proposed model is aimed at taking into account social
influence within a GDM process both in general and in the pres-
ence of incomplete information. The research assumptions on
which the proposed model is built are two: experts influence each
other and the more an expert trusts in the capability of another
expert, the more his opinion is influenced by the trusted expert.
This has immediate applications in presence of incomplete in-
formation, i.e., when experts cannot express an opinion on any
of the available alternatives. Trust statements collected among
experts are used to initialize a SIN that is in turn employed to
improve provided preferences and to estimate the missing ones.

To make the model immediately applicable in practice, we
have chosen fuzzy rankings (defined in [43]) as the represen-
tation format for preferences expression since they are user
friendly and less vulnerable to inconstancy than FPRs. The
same representation format is used for both the opinions on
alternatives and the trust statements on experts.

Given a set of experts E = {e1, . . . , em} and a set of alterna-
tives X = {x1, . . . , xn}, the proposed model works through the
following steps:

1) opinions collection: each expert ei ∈ E specifies his pref-
erences on alternatives in X through a (possibly incom-
plete) fuzzy ranking Ri ;

2) trust statements collection: each expert ei ∈ E specifies
the trust he has in the opinion of experts belonging to E
(including himself) through a (possibly incomplete) fuzzy
ranking Re

i ;
3) fuzzy ranking conversion: fuzzy rankings Ri and Re

i are
converted to (possibly incomplete) individual FPRs Pi

and Pe
i for i ∈ {1, . . . , m};

4) SIN generation: the FPRs Pe
i for i ∈ {1, . . . , m}, rep-

resenting degree of trust between experts, are used to

Fig. 3. Model steps and information flow.

generate a SIN characterized by the m × m fuzzy adja-
cency matrix W ;

5) missing preferences estimation: individual FPRs Pi for
i ∈ {1, . . . , m}, in presence of missing information, are
completed by injecting values from other FPRs via W ;

6) influence-guided preferences evolution: to simulate the
effects of experts’ interpersonal influence, the completed
individual FPRs Pi for i ∈ {1, . . . , m} are updated via W
until convergence;

7) preferences aggregation: the updated individual FPRs Pi

for i ∈ {1, . . . , m} are aggregated through OWA to obtain
the collective FPR P .

8) alternative selection: the dominance degree φ(xi ) is es-
timated for each alternative xi ∈ X according to P , then
alternatives are ranked from the best to the worst and the
first one is selected.

The information flow among the described steps is summa-
rized in Fig. 3 while the next sections provide details on each
step. In particular, Section III-A deals with the collection of
opinions and trust statements and their conversion to FPRs (steps
1–3); Section III-B explains how the SIN is generated and ap-
plied to estimate missing preferences (steps 4–5); Section III-C
deals with the application of the influence model on obtained
FPRs, their aggregation, and alternative selection (steps 6–8).

A. Preferences Collection and FPRs Generation

Although FPRs are among the most commonly used methods
to express preferences on different alternatives, they are not free
from drawbacks. First of all, especially when dealing with a
large number of alternatives, the definition of a FPRs may be-
come complex and time-consuming. Moreover, while they allow
to focus on only two options at a time, this can let the expert lose
the global perception of the problem with the risk of introducing
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inconsistency that subsequently could impact negatively on the
decision process. For these reasons, alternative representation
formats of preferences are often adopted in real GDM settings
and, if necessary, transformation functions are applied to obtain
consistent FPRs.

A fair compromise between expressiveness and easiness is
represented by fuzzy rankings as defined in [43] where ex-
perts rank the available alternatives and express the grade to
which each alternative is better than the subsequent compared
one. A fuzzy ranking can be represented through a finite se-
quence R = (xσ (1)s1 xσ (2) . . . xσ (k − 1)sk − 1 xσ (k)) with k ≤ n.
Terms in odd positions in the sequence represent a subset of the
alternatives, while σ : {1, . . . n} → {1, . . . k} is a k-permutation
function. Terms in even positions belong to the set of symbols
S = {*,>,≥,≈} and define a degree of preference between
subsequent terms (with * meaning “is much better than,” > “is
better than,” ≥ “is a little better than,” and ≈ “is similar to”).
Each alternative appears at most once in the ranking, so cycles
are not allowed although partial rankings are admitted.

Inspired by studies on the use of linguistic labels in GDM
like [44], the cardinality of S has been chosen small enough
so as not to impose useless precision to the experts and rich
enough to allow a discrimination of the relative performance of
the alternatives. On the other hand, the possibility to compose
fuzzy rankings by chaining alternatives and symbols, allows us
to indirectly express a wide variety of preferences levels.

Starting from a fuzzy ranking, it is possible to generate a FPR
as defined in [43] and [45], where a fuzzy preference degree is
associated with each symbol of S. Unfortunately, doing so the
generated FPR is not guaranteed to be additive consistent. For
this reason, we propose a new transformation function based on
the one defined in [26] which leads to additive consistent FPRs.
A relative strength |s| is associated with each symbol s ∈ S,
where | * | = 2, | > | = 1, | ≥ | = 0.5, and | ≈ | = 0 and,
given a fuzzy ranking R, a crispy rank r (xi ) is associated with
each alternative so that

1) r
(
xσ (1)

)
= 1;

2) r
(
xσ (i)

)
= r

(
xσ (i − 1)

)
+ |si − 1| ∀ i ∈ {2, . . . , k} ;

3) r (xi ) is undefined if σ (i) is undefined, i.e., if the i
th alternative does not appear in R.

(13)

Then, for any pair of alternatives xi and x j present in a fuzzy
ranking R, the following preference value can be defined:

pi j = 1
2

(

1 +
r
(
x j
)
− r (xi )

rmax − 1

)

(14)

where rmax = r (xσ (k)) is the maximum rank. The special case
rmax = 1, occurring when an expert considers all alternatives
in the fuzzy ranking equally in terms of preference, is handled
by setting pi j = 0.5. It is easy to demonstrate that the existing
elements of the obtained FPR P verify the additive consistency
property (see Appendix).

It should be noted that the relative strength of each symbol
has been selected so that, apart from ≈, each symbol doubles the

relative strength of the next one. By only using the symbol >,
the fuzzy ranking becomes a simple ordering of alternatives and
(13) and (14) become the same defined in [24]. The use of the
symbols * or ≥ in place of > respectively doubles or halves the
distance of the preceding and subsequent terms in the ranking
while the use of ≈ means that the preceding and subsequent
terms have the same rank.

As an option, experts may be allowed to provide a set of
fuzzy rankings, interesting disjoint subsets of X , rather than just
one. In this way, it is possible to deal with the case in which
an expert judges some options as mutually incomparable. To
obtain an additive consistent FPR even in this case, it is enough
to iterate (13) on any provided fuzzy ranking.

Fuzzy rankings are used in our model to let experts express
their opinion with respect to (a subset of) the alternatives as
well as their trust on (a subset of) the experts. More formally,
each expert ek ∈ E provides a fuzzy ranking Rk on the set of
alternatives in X and a fuzzy ranking Re

k on the set of experts E
(including himself).

Starting from Rk and Re
k , by applying (14), the corresponding

(incomplete) FPRs Pk and Pe
k are computed and taken forward to

the next steps. Being m the number of experts and n the number
of alternatives, the time complexity of this step is O(m · n2). To
clarify the concept, consider the following example.

Example 1: Let us suppose that we have a set of five al-
ternatives X = {x1, x2, x3, x4, x5} and a set of three experts
E = {e1, e2, e3}, that expert e1 provides the fuzzy ranking of
alternatives: R1 = x4 * x5 ≈ x2 ≥ x1 and the fuzzy ranking of
experts: Re

1 = e2 * e1 ≈ e3. In R1, the expert states that the
alternative x4 is much better than x5 which in turn is similar to
x2. The latter in turn is a little better than x1. Moreover, he has
no opinion at all on x3. In Re

1, the expert states that he thinks
that the expert e2 is much more trustable than e1 (himself) who
in turn is trustable as e3. Starting from R1 and Re

1, by applying
(13) and (14), the following associated FPRs are obtained:

P1 =





0.5 0.4 − 0 0.4
0.6 0.5 − 0.1 0.5
− − − − −
1 0.9 − 0.5 0.9

0.6 0.5 − 0.1 0.5




;

Pe
1 =




0.5 0 0.5
1 0.5 1

0.5 0 0.5



 . (15)

B. Using Social Influence to Estimate Missing Preferences

When some experts express their opinions only on a subset of
available alternatives, incomplete FPRs (i.e., FPRs with some
undefined values) are generated through (13), (14). In particular,
if the i th alternative does not appear in a given fuzzy ranking R,
then both the i th row and the i th column of the corresponding
FPR P remains undefined (e.g., alternative x3 in example 1). As
seen in Section II-A, this is considered an ignorance situation
that can be solved by selecting seed values to initialize the miss-
ing preferences and by iterating (6), (7) until the convergence is
reached and the final estimates obtained.
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Several methods have been proposed so far to obtain seed
values (as described in Section II-A). Here, we propose to obtain
seed values from preferences provided by the experts that are
trusted by the one whose FPR has to be completed. This is to say
that, when an expert is asked to evaluate an unknown alternative,
he forms his judgment using the opinion of experts he trusts. To
do that, we first generate a SIN starting from the opinions on
experts collected in Pe

k for k ∈ {1, . . . , m}. Then, any missing
preference in Pk for k ∈ {1, . . . , m} is estimated according to
the generated SIN.

As explained in Section II-C, a SIN is characterized by a fuzzy
adjacency matrix W = (wkl) where each element wkl ∈ [0, 1]
represents the strength of the influence of the lth expert on the
kth one for k, l ∈ {1, . . . , m}. So, the elements of kth row of
W can be obtained from Pe

k through FPR measures defined
in Section II like QGDD. To comply the SIN property so that

m∑
i = 1

wki = 1, a normalization step is needed as follows:

wkl = φk (el)∑m
i = 1 φk (ei )

(16)

and

φk (el ) = OWAQ
(

pe
kl j ; j = 1, . . . , m : pe

kl j is defined
)
.

(17)
Undefined elements of Pe

k are not considered in (17); when the
lth row of Pe

k is undefined (i.e., when ek expresses no preferences
on el ) φk (el ) = 0; in the special case which the kth expert only
trusts himself, we obtain via (16), (17): wkl = 0 for k (= l and
wkk = 1 meaning that the expert is not influenced by any other.

Based on the generated SIN, a missing preference pki j of an
FPR Pk coming from ek is estimated through the I-IOWA opera-
tor (defined in Section II-A), where the preferences to aggregate
come from all the defined FPRs Pl with l ∈ {1, . . . , m} while
the importance degrees, which represent the trust degree of ek

on each expert of E , come from W . Basing on (8), a missing
preference pki j is so estimated as follows:

ε
(

pki j
)

= I − IOWAQ
((

pli j , wkl
)

; l

= 1, . . . , m : pli j is defined
)
. (18)

Undefined elements of Pl with l ∈ {1, . . . , m} are not con-
sidered in (18). If seed values for some preferences are still
missing (e.g., when the same preferences are missing in the
FPRs of any trusted expert), then the estimation process based
on (18) is repeated on FPRs injected with estimated values.
The process is reiterated until no additional seed values can be
calculated. Then, the final estimates are computed through the
iterative application of (6), (7) until convergence is reached.

In some cases, it is possible that some FPR still remain par-
tially undefined. Given an FPR Pk and an alternative xi ∈ X ,
when none of the experts (directly or indirectly) trusted by ek

have an opinion on xi , i.e., when pli j and pl ji are undefined
for any j ∈ {1, . . . , n} and any l so that a path (that excludes
0-weighted arcs) from el to ek exists in the SIN, then both the
i th row and the i th column of Pk remain undefined. In case the
SIN is a connected graph this means that all experts have no
opinion on xi . This suggests that the alternative is of no interest

for the whole group so it can be removed from X . Conversely, in
case the SIN is disconnected, it is possible that other (untrusted)
experts have provided an opinion on xi . In such cases, xi cannot
be removed and remaining undefined FPRs elements must be
estimated through a different method among those discussed in
Section II-A (e.g., through indifference by setting the seed value
to 0.5).

Assuming that OWA and I-IOWA operators use state-of-the-
art sorting algorithms, the overall time complexity of the SIN
generation step is O(m · n2 log n). Instead, the time complexity
of the preference estimation step is affected by the number
of missing preferences and can be asymptotically limited by
$(m · n2) and O(m · n3 log n).

Example 2: Let E, X , P1, and Pe
1 be as reported in example

1, by applying (16), (17) with values from Pe
1 and using the fuzzy

quantifier (0, 1) corresponding to the linguistic label “much”
(see Fig. 1) to guide the OWA operator, the obtained weights
are: w1,1 = 0.17; w1,2 = 0.17; w1,3 = 0.66; meaning that, to
complete P1, values from P2 are weighted 0.17 while values
from P3 are weighted 0.66 (the first weight is irrelevant given
that it refers to expert self-trust). Let suppose that the experts e2

and e3 specify the fuzzy rankings: R2 = x4 ≈ x5 > x3 > x2 and
R3 = x3 ≈ x5 ≥ x4 * x1. The corresponding FPRs, obtained
through (13), (14), are

P2 =





− − − − −
− 0.50 0.25 0 0
− 0.75 0.50 0.25 0.25
− 1 0.75 0.50 0.50
− 1 0.75 0.50 0.50





P3 =





0.50 − 0 0.10 0
− − − − −
1 − 0.50 0.60 0.50

0.90 − 0.40 0.50 0.40
1 − 0.50 0.60 0.50




. (19)

Seed values for missing preferences of P1 are generated from
P2, P3, and wk , via (18) and using the quantifier (0, 1) to guide
the I-IOWA operator: ε(p113) = 0, ε(p123) = 0.25, ε(p131) = 1,
ε(p132) = 0.75, ε(p133) = 0.5, ε(p134) = 0.32, ε(p135) = 0.3,
ε(p143) = 0.68, ε(p153) = 0.7. By iteratively applying (6), (7)
until convergence and injecting the last estimations in P1, the
FPR coming from e1 is completed as follows (where injected
values are reported in bold):

P1 =





0.5 0.4 0.19 0 0.4
0.6 0.5 0.32 0.1 0.5
0.81 0.68 0.5 0.28 0.59

1 0.9 0.72 0.5 0.9
0.6 0.5 0.41 0.1 0.5




. (20)

C. Preferences Evolution and Best Alternative Selection

To simulate the effects of interpersonal influence among ex-
perts, the individual FPRs obtained at the preceding steps are
revised using the SIN generated with (16), (17). The aim is to
predict the final decision that will be adopted by the group of
experts as a result of interaction, without the need to actually
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perform such interaction. To do that, we apply an iterative pro-
cess like that described in Section II-C where at each step the
individual FPR of each of the experts slightly changes to take
into account the influence coming from trusted experts. Differ-
ently from [8], in our model the influence model directly impacts
individual FPRs rather than utility vectors obtained from them.
Being P (1)

k = (p(1)
ki j ), the FPR representing the initial opinion of

the kth expert with k ∈ {1, . . . , m} and i, j ∈ {1, . . . , n}, it is
possible to estimate the elements of the kth expert’s FPR after
t interactions based on the SIN fuzzy adjacency matrix W as
follows:

p(t)
ki j = I − IOWAQ

((
p(t − 1)

1i j , wk1

)
, . . . ,

(
p(t − 1)

mi j , wkm

))
.

(21)
In other words, at each step, each preference is updated by

composing the current preference with preferences coming from
all the experts via the I-IOWA operator. The importance degree
of each contribution matches the strength of the interpersonal
influence coming from W . Extending the notation to matrices,
we can rewrite (21) as follows:

P (t)
k = I − IOWAQ

((
P (t − 1)

1 , wk1

)
, . . . ,

(
P (t − 1)

m , wkm
))

.

(22)
When the fuzzy quantifier Q = (0, 1), corresponding to the

linguistic label “much” (see Fig. 1), is used to obtain the I-
IOWA weights, it can be demonstrated that, if there exists a
positive integer l so that every element in at least one column
of W l is positive, then the m FPRs are expected to converge
to the same FPR (see Appendix). In practical applications, the
process may be stopped after a fixed number of iteration or
when the average absolute difference between FPRs values in
two subsequent steps is under a given threshold θ , i.e., when

1
m · n2

∑

1≤i, j≤n; 1≤k≤m

∣∣∣p(t)
ki j − p(t − 1)

ki j

∣∣∣ ≤ θ . (23)

When the stopping conditions are met, in case of lack of con-
vergence, the obtained FPRs are aggregated through the OWAQ

operator defined in Section II, whose weights are initialized ac-
cording to (4). A score value φ(xi ) is then calculated for each
xi ∈ X through the QGDD operator defined by (5) and the best
alternative is chosen as the result of the GDM problem.

To obtain a more exhaustive and easy to understand solution
to the problem, it is possible to convert the obtained score values
φ(xi ) for i ∈ {1, . . . , n}, back to a collective fuzzy ranking of al-
ternatives R = (xσ (1)s1 xσ (2) . . . xσ (n − 1)sn − 1 xσ (n)) where si ∈
{*,>,≥,≈} and σ : {1, . . . n} → {1, . . . n} is a permutation
function such that φ(xσ (i)) ≥ φ(xσ (i + 1)) for i ∈ {1, . . . , n − 1}.
Based on the relative strength associated with each symbol (as
defined in A), it is possible to obtain any si for i ∈ {1, . . . , n} as
follows:

si =






≈ i f φ
(
xσ (i + 1)

)
− φ

(
xσ (i)

)
< 0.25 · δ

≥ i f 0.25 · δ ≤ φ
(
xσ (i + 1)

)
− φ

(
xσ (i)

)
< 0.75 · δ

> i f 0.75 · δ ≤ φ
(
xσ (i + 1)

)
− φ

(
xσ (i)

)
< 1.5 · δ

* i f 1.5 · δ ≤
(
xσ (i + 1)

)
− φ

(
xσ (i)

)

(24)

where δ is the average difference between two subsequent
ranked score values:

δ = 1
n − 1

n − 1∑

i = 1

(
φ
(
xσ (i + 1)

)
− φ

(
xσ (i)

))
. (25)

The time complexity of each iteration of the preference evo-
lution step is O(m · n3 log n). Being the number of iterations
limited by a constant, it can be considered as asymptotically
negligible. The aggregation of FPRs (in case of lack of con-
vergence) has a time complexity of O(m · n3 log n), while the
complexity of the alternative selection step is O(n2 log n).

Example 3: Let E, X , P2, P3 and Pe
1 be as reported in previ-

ous examples and the completed individual FPR P1 as reported
in (20). Let Re

2 = e1 ≈ e2 * e3 and Re
3 = e3 > e2 > e1 be the

fuzzy rankings of experts defined, respectively, by e2 and e3,
through (16), (17) it is possible to obtain the SIN represented
by the following matrix:

W =




0.17 0.67 0.17
0.5 0.5 0
0.08 0.33 0.85



 . (26)

Using W , it is possible to estimate the completed individual
FPRs P2 and P3 through (18) as follows (where injected values
are represented in bold):

P2 =





0.5 0.56 0.34 0.77 0.16
0.38 0.5 0.25 0 0
0.52 0.75 0.5 0.25 0.25
0.86 1 0.75 0.5 0.5
0.78 1 0.75 0.5 0.5





P3 =





0.5 0.41 0 0.1 0
0.59 0.5 0.12 0.16 0.09

1 0.88 0.5 0.6 0.5
0.9 0.84 0.4 0.5 0.4
1 0.91 0.5 0.6 0.5




. (27)

The completed FPRs are then updated according to (22) sim-
ulating the effect of influence. The fuzzy quantifier Q = (0, 1),
corresponding to the linguistic label “much,” is used to guide
the I-IOWA operator. The following matrices represent the evo-
lution of P1 after two and six iterations:

P (2)
1 =





0.5 0.51 0.26 0.07 0.17
0.45 0.5 0.24 0.04 0.1
0.65 0.76 0.5 0.31 0.35
0.89 0.56 0.69 0.5 0.55
0.78 0.9 0.65 0.45 0.5





P (6)
1 =





0.5 0.48 0.25 0.05 0.22
0.48 0.5 0.26 0.05 0.18
0.68 0.74 0.5 0.31 0.4
0.91 0.95 0.69 0.5 0.62
0.75 0.82 0.6 0.38 0.5




. (28)

After six iterations, all individual FPRs converge to the same
FPR P = P (6)

1 = P (6)
2 = P (6)

3 that can be considered as the col-
lective preference relation of consensus (so there is no need for
aggregation). By applying (5), the score values associated with
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TABLE I
COLLECTED FUZZY RANKINGS OF ALTERNATIVES AND EXPERTS (LEFT) AND COMPLETED FUZZY RANKINGS OF ALTERNATIVES (RIGHT)—FIRST CASE

Expert Fuzzy rankings of alternatives Fuzzy rankings of experts Completed fuzzy rankings of alternatives

e1 x5 * x7 ≈ x8 ≥ x1 ≈ x3 > x4 * x2 e2 * e1 > e4 ≥ e5 x5 > x6 ≥ x10 > x7 ≈ x8 ≥ x1 ≥ x3 * x4 * x9 > x2
e2 x10 ≈ x6 > x2 ≥ x1 * x3 ≥ x9 ≈ x5 e3 > e2 ≈ e4 ≥ e5 > e6 x10 ≥ x6 * x2 > x1 > x4 * x3 ≥ x8 ≥ x5 ≥ x7 ≈ x9
e3 x3 ≈ x5 > x10 * x1 > x2 > x6 ≈ x7 ≈ x8 e3 * e6 ≥ e2 > e5 x3 ≈ x5 > x10 * x4 ≥ x1 * x2 * x6 ≈ x7 ≈ x8 ≥ x9
e4 x6 > x2 ≥ x1 > x9 ≈ x5 > x8 e4 > e3 > e2 ≈ e1 > e5 ≈ e6 x10 ≥ x6 > x3 > x2 ≥ x1 ≥ x4 * x5 ≥ x7 ≥ x9 * x8
e5 x3 > x5 * x8 > x1 > x10 > x6 > x2 e3 ≥ e5 ≥ e6 > e1 ≈ e2 x3 > x5 * x8 > x1 ≈ x4 > x10 * x6 ≥ x7 > x2 ≥ x9
e6 x10 ≈ x4 > x5 * x6 > x2 e6 * e2 ≥ e5 > e4 x10 > x4 > x5 * x1 ≈ x3 > x8 ≥ x6 > x7 > x9 ≥ x2

TABLE II
EXPERTS’ INITIAL OPINIONS CONVERTED IN FPRS—FIRST CASE

P1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.77 0.50 0.59 0.27 − 0.45 0.45 − −
0.23 0.50 0.23 0.32 0.00 − 0.18 0.18 − −
0.50 0.77 0.50 0.59 0.27 − 0.45 0.45 − −
0.41 0.68 0.41 0.50 0.18 − 0.36 0.36 − −
0.73 1.00 0.73 0.82 0.50 − 0.68 0.68 − −
− − − − − 0.50 − − − −

0.55 0.82 0.55 0.64 0.32 − 0.50 0.50 − −
0.55 0.82 0.55 0.64 0.32 − 0.50 0.50 − −
− − − − − − − − 0.50 −
− − − − − − − − − 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.44 0.75 − 0.81 0.31 − − 0.81 0.31
0.56 0.50 0.81 − 0.88 0.38 − − 0.88 0.38
0.25 0.19 0.50 − 0.56 0.06 − − 0.56 0.06
− − − 0.50 − − − − − −

0.19 0.13 0.44 − 0.50 0.00 − − 0.50 0.00
0.69 0.63 0.94 − 1.00 0.50 − − 1.00 0.50
− − − − − − 0.50 − − −
− − − − − − − 0.50 − −

0.19 0.13 0.44 − 0.50 0.00 − − 0.50 0.00
0.69 0.63 0.94 − 1.00 0.50 − − 1.00 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.60 0.20 − 0.20 0.70 0.70 0.70 − 0.30
0.40 0.50 0.40 − 0.10 0.60 0.60 0.60 − 0.20
0.80 0.90 0.50 − 0.50 1.00 1.00 1.00 − 0.60
− − − 0.50 − − − − − −

0.80 0.90 0.50 − 0.50 1.00 1.00 1.00 − 0.60
0.30 0.40 0.00 − 0.00 0.50 0.50 0.50 − 0.10
0.30 0.40 0.00 − 0.00 0.50 0.50 0.50 − 0.10
0.30 0.40 0.00 − 0.00 0.50 0.50 0.50 − 0.10
− − − − − − − − 0.50 −

0.70 0.80 0.40 − 0.40 0.90 0.90 0.90 − 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.43 − − 0.64 0.29 − 0.79 0.64 −
0.57 0.50 − − 0.71 0.36 − 0.86 0.71 −
− − 0.50 − − − − − − −
− − − 0.50 − − − − − −

0.36 0.29 − − 0.50 0.14 − 0.64 0.50 −
0.71 0.64 − − 0.86 0.50 − 1.00 0.86 −
− − − − − − − 0.50 − −

0.21 0.14 − − 0.36 0.00 − 0.50 0.36 −
0.36 0.29 − − 0.50 0.14 − 0.64 0.50 −
− − − − − − − − − 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.71 0.21 − 0.29 0.64 − 0.43 − 0.57
0.29 0.50 0.00 − 0.07 0.43 − 0.21 − 0.36
0.79 1.00 0.50 − 0.57 0.93 − 0.71 − 0.86
− − − 0.50 − − − − − −

0.71 0.93 0.43 − 0.50 0.86 − 0.64 − 0.79
0.36 0.57 0.07 − 0.14 0.50 − 0.29 − 0.43
− − − − − − 0.50 − − −

0.57 0.79 0.29 − 0.39 0.71 − 0.50 − 0.64
− − − − − − − − 0.50 −

0.43 0.64 0.14 − 0.21 0.57 − 0.36 − 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 − − − − − − − − −
− 0.50 − 0.00 0.13 0.38 − − − 0.00
− − 0.50 − − − − − − −
− 1.00 − 0.50 0.63 0.88 − − − 0.50
− 0.88 − 0.38 0.50 0.75 − − − 0.38
− 0.63 − 0.13 0.25 0.50 − − − 0.13
− − − − − − 0.50 − − −
− − − − − − − 0.50 − −
− − − − − − − − 0.50 −
− 1.00 − 0.50 0.63 0.88 − − − 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

alternatives are: φ(x1) = 0.25; φ(x2) = 0.24; φ(x3) = 0.53;
φ(x4) = 0.79; φ(x5) = 0.64. The best alternative is x4 which
can be considered the solution of the problem. By applying (24)
and (25), it is also possible to obtain the following collective
fuzzy ranking of alternatives: x4 > x5 > x3 * x1 ≈ x2.

IV. EXPERIMENTS AND EVALUATION

This section describes two in silico experiments of the pro-
posed methodology aimed at illustrating its operational steps
and its convergence properties. Eventually, a qualitative com-
parison with other existing methods is proposed.

A. First Case: Convergence of Experts’ Opinions

Let E = {e1, e2, e3, e4, e5, e6} be a set of experts that have
to choose the best alternative among those available in the
set X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10}. According to the

defined model, experts use fuzzy rankings to express both their
preferences on alternatives and their trust on other experts.
Defined fuzzy rankings are reported in the second and third
columns of Table I. As it can be seen, many experts provide
incomplete information both with respect to alternatives and to
other experts. For example, e1 just evaluates 7 alternatives over
10 and express his trust on 4 experts over 6.

Applying (13), (14), the fuzzy rankings on alternatives are
converted into FPRs (see Table II). As it can be seen, many
elements remain undefined given the incompleteness of experts’
opinion.

The same process is repeated with fuzzy rankings of experts
and obtained FPRs (that are not reported for reasons of brevity)
are, in turn, used to build an SIN via (16), (17). It is important
to note that, even if information on trust is incomplete, the
SIN generation process is able to initialize any SIN weight.
The obtained SIN, shown in Fig. 4, can be summarized by the
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TABLE III
EXPERTS’ OPINIONS COMPLETED WITH PREFERENCES INJECTED FROM TRUSTED EXPERTS—FIRST CASE

P1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.77 0.50 0.59 0.27 0.32 0.45 0.45 0.62 0.35
0.23 0.50 0.23 0.32 0.00 0.14 0.18 0.18 0.44 0.16
0.50 0.77 0.50 0.59 0.27 0.27 0.45 0.45 0.57 0.30
0.41 0.68 0.41 0.50 0.18 0.21 0.36 0.36 0.51 0.23
0.73 1.00 0.73 0.82 0.50 0.41 0.68 0.68 0.71 0.44
0.61 0.79 0.66 0.63 0.52 0.50 0.53 0.60 0.73 0.46
0.55 0.82 0.55 0.64 0.32 0.30 0.50 0.50 0.60 0.33
0.55 0.82 0.55 0.64 0.32 0.33 0.50 0.50 0.63 0.36
0.31 0.50 0.36 0.33 0.22 0.14 0.23 0.30 0.50 0.16
0.59 0.77 0.63 0.60 0.49 0.41 0.50 0.57 0.71 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.44 0.75 0.38 0.81 0.31 0.70 0.69 0.81 0.31
0.56 0.50 0.81 0.37 0.88 0.38 0.69 0.68 0.88 0.38
0.25 0.19 0.50 0.26 0.56 0.06 0.58 0.57 0.56 0.06
0.42 0.46 0.54 0.50 0.62 0.37 0.65 0.64 0.64 0.28
0.19 0.13 0.44 0.21 0.50 0.00 0.53 0.52 0.50 0.00
0.69 0.63 0.94 0.46 1.00 0.50 0.78 0.77 1.00 0.50
0.20 0.24 0.32 0.11 0.40 0.15 0.50 0.42 0.42 0.06
0.25 0.29 0.37 0.16 0.45 0.19 0.48 0.50 0.47 0.11
0.19 0.13 0.44 0.12 0.50 0.00 0.44 0.43 0.50 0.00
0.69 0.63 0.94 0.55 1.00 0.50 0.87 0.86 1.00 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.60 0.20 0.32 0.20 0.70 0.70 0.70 0.63 0.30
0.40 0.50 0.10 0.21 0.10 0.60 0.60 0.60 0.52 0.20
0.80 0.90 0.50 0.54 0.50 1.00 1.00 1.00 0.84 0.60
0.48 0.62 0.26 0.50 0.30 0.67 0.65 0.65 0.64 0.32
0.80 0.90 0.50 0.53 0.50 1.00 1.00 1.00 0.84 0.60
0.30 0.90 0.50 0.53 0.50 1.00 1.00 1.00 0.84 0.60
0.30 0.40 0.00 0.16 0.00 0.50 0.50 0.50 0.47 0.10
0.30 0.40 0.00 0.11 0.00 0.50 0.50 0.50 0.42 0.10
0.24 0.38 0.02 0.09 0.06 0.43 0.41 0.41 0.50 0.08
0.70 0.80 0.40 0.52 0.40 0.90 0.90 0.90 0.83 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P4 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.43 0.42 0.50 0.64 0.29 0.60 0.79 0.64 0.34
0.57 0.50 0.38 0.47 0.71 0.36 0.57 0.86 0.71 0.30
0.58 0.62 0.50 0.59 0.62 0.53 0.69 0.79 0.69 0.42
0.46 0.50 0.38 0.50 0.50 0.41 0.57 0.67 0.57 0.30
0.36 0.29 0.38 0.47 0.50 0.14 0.57 0.64 0.50 0.30
0.71 0.64 0.47 0.56 0.86 0.50 0.66 1.00 0.86 0.39
0.37 0.40 0.28 0.37 0.40 0.31 0.50 0.57 0.47 0.20
0.21 0.14 0.21 0.30 0.36 0.00 0.40 0.50 0.36 0.13
0.36 0.29 0.24 0.33 0.50 0.14 0.43 0.64 0.50 0.16
0.66 0.70 0.58 0.67 0.70 0.61 0.77 0.87 0.77 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.71 0.21 0.49 0.29 0.64 0.65 0.43 0.67 0.57
0.29 0.50 0.00 0.28 0.07 0.43 0.44 0.21 0.46 0.36
0.79 1.00 0.50 0.69 0.57 0.93 0.85 0.71 0.86 0.86
0.47 0.68 0.28 0.50 0.34 0.62 0.62 0.45 0.64 0.49
0.71 0.93 0.43 0.63 0.50 0.86 0.79 0.64 0.80 0.79
0.36 0.57 0.07 0.35 0.14 0.50 0.51 0.29 0.52 0.43
0.32 0.52 0.12 0.31 0.18 0.46 0.50 0.29 0.48 0.33
0.57 0.79 0.29 0.48 0.36 0.71 0.64 0.50 0.66 0.64
0.23 0.44 0.04 0.23 0.10 0.38 0.38 0.21 0.50 0.25
0.43 0.64 0.14 0.48 0.21 0.57 0.63 0.36 0.65 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.50 0.61 0.44 0.31 0.44 0.51 0.35 0.50 0.61 0.33
0.29 0.50 0.29 0.00 0.13 0.38 0.20 0.36 0.46 0.00
0.43 0.61 0.50 0.31 0.44 0.50 0.34 0.50 0.61 0.32
0.45 1.00 0.46 0.50 0.63 0.88 0.37 0.52 0.63 0.50
0.46 0.88 0.46 0.38 0.50 0.75 0.37 0.52 0.63 0.38
0.39 0.63 0.40 0.13 0.25 0.50 0.31 0.46 0.57 0.13
0.29 0.47 0.29 0.17 0.30 0.36 0.50 0.35 0.46 0.18
0.36 0.54 0.37 0.28 0.38 0.44 0.28 0.50 0.54 0.26
0.26 0.44 0.26 0.14 0.27 0.33 0.17 0.32 0.50 0.15
0.57 1.00 0.58 0.50 0.63 0.88 0.48 0.64 0.75 0.50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Fig. 4. Generated SIN—first case.

following fuzzy adjacency matrix:

W =





0.26 0.45 0 0.17 0.12 0
0 0.22 0.32 0.22 0.17 0.07
0 0.20 0.44 0 0.11 0.25

0.16 0.16 0.22 0.29 0.09 0.09
0.09 0.09 0.34 0 0.28 0.21

0 0.25 0 0.11 0.20 0.44




.

Applying the process described in Section III-B, it is then pos-
sible to estimate missing preferences by injecting external seeds

from trusted experts (according to the SIN) and consolidate them
through harmonization with existing preferences using the ad-
ditive consistency property process described in Section II-A.
Completed FPRs are reported in Table III. To make these results
more readable, we apply (24), (25) to obtain back the completed
fuzzy rankings after the injection of external preferences. They
are reported in the last column of Table I for comparison with
the initial rankings.

The next step consists in executing the process described in
Section III-C to let experts’ preferences evolve according to
social influence. The process is expected to converge since at
least one column of W has all positive elements. In fact, after
five iterations, the experts’ preferences converge to the same
collective FPR P reported below:

P =





0.5 0.58 0.4 0.39 0.44 0.51 0.59 0.61 0.67 0.36
0.4 0.5 0.31 0.24 0.32 0.43 0.48 0.51 0.59 0.23

0.57 0.67 0.5 0.46 0.51 0.61 0.69 0.71 0.71 0.44
0.46 0.67 0.38 0.5 0.46 0.6 0.56 0.58 0.63 0.37
0.54 0.68 0.46 0.45 0.5 0.6 0.67 0.69 0.68 0.42
0.47 0.57 0.37 0.31 0.4 0.5 0.53 0.57 0.66 0.29
0.3 0.42 0.2 0.21 0.23 0.36 0.5 0.42 0.45 0.17

0.35 0.46 0.25 0.26 0.29 0.4 0.46 0.5 0.5 0.24
0.25 0.35 0.2 0.17 0.25 0.27 0.35 0.38 0.5 0.12
0.61 0.77 0.53 0.53 0.58 0.71 0.73 0.73 0.8 0.5





.

From P , by applying (5) to calculate the dominance
degrees: φ(x1) = 0.51, φ(x2) = 0.39, φ(x3) = 0.6, φ(x4) =
0.52, φ(x5) = 0.58, φ(x6) = 0.46, φ(x7) = 0.31, φ(x8) = 0.36,
φ(x9) = 0.26, φ(x1) = 0.67. Therefore, the best alternative is
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Fig. 5. Evolution of experts’ preferences thanks to the influence model—first case. The x-axis represents the number of performed iterations, y-axis represents
the dominance degree of each alternatives for each expert at a given iteration. Different colors correspond to different alternatives whose identifier is shown on the
right. The first five alternatives are plotted on the left, the last five on the right.

TABLE IV
COLLECTED FUZZY RANKINGS OF ALTERNATIVES AND EXPERTS (LEFT) AND COMPLETED FUZZY RANKINGS OF ALTERNATIVES (RIGHT)—SECOND CASE

Expert Fuzzy rankings of alternatives Fuzzy rankings of experts Completed fuzzy rankings of alternatives

e1 x5 * x7 ≈ x8 ≥ x1 ≈ x3 > x4 * x2 e1 > e2 ≥ e3 x10 ≥ x5 * x6 > x7 ≈ x8 ≥ x1 ≈ x3 * x4 * x9 > x2
e2 x10 ≈ x6 > x2 ≥ x1 * x3 ≥ x9 ≈ x5 e2 * e1 ≈ e3 x10 ≥ x6 * x2 ≥ x1 * x7 ≈ x8 ≈ x4 ≥ x3 > x5 > x9
e3 x3 ≈ x5 > x10 * x1 > x2 > x6 ≈ x7 ≈ x8 e1 ≈ e2 ≈ e3 x3 ≈ x5 * x10 * x1 * x2 ≥ x4 > x6 ≈ x7 ≈ x8 ≥ x9
e4 x6 > x2 ≥ x1 > x9 ≈ x5 > x8 e4 > e5 ≈ e6 x6 ≥ x3 * x4 ≈ x2 ≥ x1 > x10 > x5 ≥ x7 ≈ x9 * x8
e5 x3 > x5 * x8 > x1 > x10 > x6 > x2 e5 ≥ e4 ≈ e6 x3 > x5 * x8 ≥ x4 > x1 > x10 ≥ x9 ≈ x7 ≥ x6 > x2
e6 x10 ≈ x4 > x5 * x6 > x2 e4 ≈ e6 > e5 x4 ≈ x10 * x5 * x1 ≥ x6 * x3 ≥ x7 > x9 > x2 > x8

x10. In addition, the obtained dominance degrees can be used to
generate the following ranking of alternatives:

x10 * x3 ≥ x5 > x4 ≥ x1 > x6 * x2 ≥ x8 > x7 > x9.

Fig. 5 shows the evolution, through the five iterations, of the
dominance degrees associated with each alternative for the in-
volved experts, which elucidates the convergence process versus
the final preferences. The figure also allows us to easily perceive
the final ranking between alternatives, but also observe the pro-
cess dynamics that led to the generation of the final decision.
For example, it can be noticed that the most controversial alter-
natives have been x6 and x2 since the convergence on them was
reached later than for the other alternatives.

B. Second Case: Lack of Convergence

A special case for the model is when the matrix W does not
respect the conditions for convergence. Let suppose that the six
experts of the previous example provide the same opinions on
alternatives, but different fuzzy rankings of experts (as shown in
Table IV). By applying (13), (14), the fuzzy rankings of experts
are converted in FPRs and, then, used to build an SIN via (16),
(17). The obtained SIN, shown in Fig. 6, can be summarized by

Fig. 6. Generated SIN—second case.

the following fuzzy adjacency matrix:

W =





0.61 0.28 0.11 0 0 0
0.17 0.67 0.17 0 0 0
0.33 0.33 0.33 0 0 0

0 0 0 0.67 0.17 0.17
0 0 0 0.17 0.67 0.17
0 0 0 0.5 0 0.5




.
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TABLE V
THE INFLUENCED FPRS OBTAINED WITHIN THE FIRST SUBGROUP (LEFT) AND THE SECOND SUBGROUP (RIGHT)—SECOND CASE

P ′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0, 50 0, 58 0, 56 0, 58 0, 51 0, 41 0, 58 0, 58 0, 72 0, 29
0, 42 0, 50 0, 48 0, 45 0, 43 0, 36 0, 46 0, 46 0, 67 0, 24
0, 44 0, 52 0, 50 0, 55 0, 45 0, 33 0, 57 0, 57 0, 63 0, 21
0, 36 0, 48 0, 39 0, 50 0, 31 0, 28 0, 44 0, 44 0, 52 0, 13
0, 49 0, 57 0, 55 0, 63 0, 50 0, 35 0, 65 0, 65 0, 65 0, 23
0, 58 0, 63 0, 66 0, 59 0, 63 0, 50 0, 63 0, 63 0, 80 0, 37
0, 40 0, 53 0, 42 0, 48 0, 34 0, 32 0, 50 0, 48 0, 54 0, 16
0, 40 0, 53 0, 42 0, 48 0, 34 0, 32 0, 48 0, 50 0, 54 0, 16
0, 23 0, 28 0, 32 0, 28 0, 30 0, 13 0, 32 0, 32 0, 50 0, 02
0, 70 0, 75 0, 78 0, 73 0, 76 0, 61 0, 79 0, 79 0, 91 0, 50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

P ′′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0, 50 0, 52 0, 25 0, 29 0, 49 0, 41 0, 32 0, 63 0, 55 0, 44
0, 43 0, 50 0, 15 0, 15 0, 41 0, 38 0, 23 0, 60 0, 52 0, 29
0, 56 0, 69 0, 50 0, 38 0, 56 0, 59 0, 41 0, 66 0, 55 0, 56
0, 46 0, 70 0, 30 0, 50 0, 53 0, 60 0, 37 0, 58 0, 51 0, 51
0, 46 0, 59 0, 29 0, 32 0, 50 0, 47 0, 33 0, 63 0, 52 0, 49
0, 54 0, 62 0, 25 0, 25 0, 53 0, 50 0, 33 0, 71 0, 64 0, 40
0, 30 0, 43 0, 14 0, 17 0, 32 0, 33 0, 50 0, 41 0, 34 0, 30
0, 30 0, 35 0, 15 0, 17 0, 32 0, 24 0, 20 0, 50 0, 37 0, 33
0, 33 0, 39 0, 16 0, 19 0, 39 0, 27 0, 23 0, 51 0, 50 0, 33
0, 42 0, 66 0, 24 0, 32 0, 46 0, 55 0, 31 0, 52 0, 45 0, 50

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Fig. 7. Evolution of experts’ preferences for the alternatives x1 (on the left) and x2 (on the right)—second case. x-axis represents the number of performed
iterations, y-axis represents the dominance degree of the plotted alternative for each expert at a given iteration. Different colors correspond to different experts.
Identifiers for experts and alternatives are shown on the right.

Like in the previous case, the experts are initially in disagree-
ment but, unlike the previous case, they grant their trust only to a
small subset of colleagues so as to create two unconnected sub-
groups. As it can be seen from the figure (but it is also evident
from the matrix W ), experts e1, e2, and e3 do not provide trust
information regarding experts e4, e5, and e6 so their preferences
are not mutually influenced by the model. It is easy to demon-
strate that W does not meet the conditions for convergence since
it is impossible to find a positive integer l so that every element
in at least one column of W l is positive. Therefore, it is expected
that the influence process does not converge.

Since the fuzzy rankings about alternatives are the same as
in the previous example, after conversion, the obtained FPRs
are the same already shown in Table II. Obtained FPRs are
then completed according to the new SIN and used as input
for the influence model (the last column of Table IV reports
the completed FPRs converted back into fuzzy rankings). After
eight interactions, each of the two subgroups of experts reaches
internal consensus on a single FPR, but the FPRs obtained by
the two subgroups of experts are different (the two FPRs are
reported in Table V).

The evolution of the dominance degree of the first two al-
ternatives is exemplified in Fig. 7. (2) is then used to ag-

gregate the FPRs coming from the two subgroups of experts
and the resulting dominance degree associated with each al-
ternative is φ(x1) = 0.48, φ(x2) = 0.39, φ(x3) = 0.51, φ(x4) =
0.43, φ(x5) = 0.49, φ(x6) = 0.54, φ(x7) = 0.36, φ(x8) = 0.34,
φ(x9) = 0.28, φ(x1) = 0.6. Again, the final group solution is
x10, although the new collective fuzzy ranking of alternatives is

x10 * x6 > x3 ≥ x5 ≈ x1 > x4 > x2 > x7 ≥ x8 * x9.

C. Comparative Evaluation

As confirmed by the preceding experiments, our model offers
a greater flexibility with respect to that proposed in [8], based
on a predefined SIN. Instead, in our model the SIN is estimated
from opinions expressed by the experts in the same form of
preferences on alternatives. Moreover, by asking experts to place
themselves in the defined rankings, we avoid the complication of
defining a numerical level representing the susceptibility of each
expert to influence (like in [8]) or a numerical level representing
interpersonal trust as in [11] and [12].

In [9], social influence is calculated and represented in form
of tie strength between members of a social network by combin-
ing the number of their common connections with the number
of their direct interactions. Despite this, method automates the
influence estimation process; it does not provide any guarantee
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TABLE VI
COMPARISON WITH OTHER MODELS

Our model Model proposed in [8] Model proposed in [9] Models in [11] and [12]

Estimation of Social
Influence

Based on fuzzy rankings of
experts

Based on a predefined SIN Based on social network
analysis

Based on numerical trust
statements

Representation of Social
Influence

SIN SIN Normalized tie strength Normalized trust level

Applications of Social
Influence

Estimation of Missing
Preferences Evolution of

Preferences Selection of the Best
Alternative

Evolution of Preferences Estimation of Experts’
Importance Estimation of

Missing Preferences

Estimation of Experts’
Importance

that the strength of a tie on a social network is a good approx-
imation of how an opinion can be influenced with respect to a
specific decision problem. Moreover, it requires that all experts
are active members of the same social network.

With respect to the applications of social influence, it should
be noted that in our model the influence in not used to estimate
a global importance level for each expert (like in [9], [11],
and [12]), but to let the preference of each expert gradually
evolve simulating the effect of social interaction (like in [8]).
In addition (like in [9]), we also use influence as a mean to
estimate missing preferences in case of incomplete information.
This is possible because, in our model, influence evolution can
be operated directly on experts’ FPRs rather than on utility
vectors extracted from FPRs (like in [8]).

Simulating the natural evolution of opinions thanks to dis-
cussion, our model also tries to obtain the convergence between
the experts’ opinions. This is a distinctive feature with respect
to existing models because social influence also impacts the
preferences aggregation phase. In such sense, our model can be
also used to support automated consensus processes. Table VI
summarizes the differences and the advantages of the proposed
model with respect to other existing ones.

V. CONCLUSION

Despite its prominent role in opinion formation, social influ-
ence seems to be almost disregarded by current GDM models.
Aiming at filling this gap, we have developed in this paper a new
GDM model able to take into account social influence between
experts during the process and to estimate how experts’ opinion
change according to its effects. In this model, the concept of
social influence is strictly interconnected with that of interper-
sonal trust according to the intuition that the more an expert
trusts in the capability of another expert, the more his opinion
is influenced by the trusted expert, especially in presence of in-
complete information, i.e., when experts are unable to express
an opinion on any of the alternatives.

Fuzzy rankings are used to represent experts’ opinions re-
garding both their preferences on the set of alternatives and
their trust on other experts. This opinion representation format
is user friendly and less vulnerable to inconstancy than com-
monly used FPRs. Fuzzy rankings of experts are used to build
an SIN that specifies the structure and the level of experts’ in-
terpersonal influence. The network is used, in turn, to estimate
missing preferences and to let them evolve simulating the effects

of experts’ interaction before aggregating them for the selection
of the best alternative. The time complexity of the whole pro-
cess is polynomial and limited by O(m · n3 log n), where m is
the number of experts and n the number of alternatives. It has
been also demonstrated that under certain conditions, experts’
opinion naturally converge to a final collective opinion.

We believe that the defined model leads to a more accurate
representation of the GDM process by formalizing important as-
pects that are usually disregarded by other models. On the other
hand, we estimate the level of social influence based on in-
terpersonal trust without considering other psychological traits
like leadership, charisma, persuasive ability, etc., that could
strengthen or weaken influence when real interactions between
experts take place. Nevertheless, we believe that the exclusion
of these additional traits is advantageous and enables us to reach
more objective decisions.

APPENDIX

To improve readability, some demonstrations have been re-
moved from the main text and presented here. In particular, we
prove below two statements made in Sections III-A and III-C.

Proposition 1: (Additive Consistency of FPRs Generated
From Fuzzy Rankings). If P is a n × n FPR generated from
a fuzzy ranking R according to (13) and (14), then the elements
of P that exist verify the additive consistency property.

Proof: A n × n FPR P = (pi j ) is additive consistent if
pi j + p jk + pki = 1.5∀i, j, k ∈ {1, . . . , n}. Based on (14), we
can write

pi j + p jk + pki = 1
2

(

1 +
r
(
x j
)
− r (xi )

r max −1

)

+ 1
2

(

1 +
r (xk) − r

(
x j
)

r max −1

)

+ 1
2

(
1 + r (xi ) − r (xk)

r max −1

)

= 3
2

+
r
(
x j
)
− r (xi ) + r (xk) − r

(
x j
)
+ r (xi ) − r (xk)

2r max −2
.

For rmax (= 1, and because its fraction numerator is 0, we
have that pi j + p jk + pki = 3/2 + 0 = 1.5 proofing that P is
additive consistent. The case rmax = 1, which leads to 0/0
indeterminate form, is treated separately in Section III-A by
setting pi j = 0.5 ∀i, j ∈ {1, . . . , n}. In this case, the proof that
P is additive consistent is trivial given that: pi j + p jk + pki =
0.5 + 0.5 + 0.5 = 1.5 ∀i, j, k ∈ {1, . . . , n}.
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Proposition 2: (Convergence of the Influence Model). If
Q = (0, 1) in (22), and there exists a positive integer l so that
every element in at least one column of the SIN fuzzy adjacency
matrix W l is positive, then all the FPRs P (t)

k for k ∈ {1, . . . , m}
converge to the same FPR.

Proof: Combining (21) with the definition of the I-IOWA
operator provided by (8) and (9), we obtain that, being p(t)

k a
generic element belonging to the FPR P (t)

k for k ∈ {1, . . . , m}
and t > 1:

p(t)
k = I − IOWAQ

((
p(t − 1)

1 , wk1

)
, . . . ,

(
p(t − 1)

m , wkm
))

=
m∑

i = 1

(
µQ

(
S (i)
S (m)

)
− µQ

(
S (i − 1)

S (m)

))
p(t − 1)

σ (i) .

where S(i) =
i∑

j = 1
wkσ ( j) and σ : {1, . . . m} → {1, . . . m} is

a permutation function so that wσ (i) ≥ wσ (i + 1) for i ∈
{1, . . . , m}. Being Q = (0, 1), by substituting a = 0 and b = 1
in (3), we obtain µQ(y) = y − 0

1 − 0 = y for 0 ≤ y ≤ 1. Given that
S(i) and S(m) are positive number so that S(m) ≥ S(i) for 1 ≤
i ≤ m, then we can say that 0 ≤ S(i)

S(m) ≤ 1 so µQ( S(i)
S(m) ) = S(i)

S(m) .
By substituting this in the preceding equation, we obtain

p(t)
k =

m∑

i = 1

(
S (i)
S (m)

− S (i − 1)
S (m)

)
p(t − 1)

σ (i)

=
m∑

i = 1

∑i
j = 1 wkσ ( j) −

∑i − 1
j = 1 wkσ ( j)∑m

j = 1 wkσ ( j)
p(t − 1)

σ (i)

=
m∑

i = 1

wkσ (i)∑m
j = 1 wkσ ( j)

p(t − 1)
σ (i) .

Given that W is the fuzzy adjacency matrix of a SIN, thanks to
(16) we have that

∑m
j = 1 wk j = 1 for any k ∈ {1, . . . , m}. Being

σ a permutation function,
∑m

j = 1 wkσ ( j) simply sum the same
elements in a different order so we can say that

∑m
j = 1 wkσ ( j) =

1 too. By substituting this in the preceding equation, we obtain

p(t)
k =

m∑

i = 1

wkσ (i) p(t − 1)
σ (i) =

m∑

i = 1

wki p(t − 1)
i .

If we build the vector p(t) = (p(t)
1 , . . . , p(t)

m )T including the
same preference as expressed by all m experts, we can gen-
eralize the preceding equation using matrix notation as p(t) =
W p(t − 1) = W t − 1 p(1). As explained in [6], W can be regarded
as the one-step transition probability matrix of a Markov chain
with m states and stationary transition probabilities.

If there exists a positive integer l so that every element
in at least one column of W l is positive, then the Markov
chain is said regular and, thanks to the limit theorem for reg-
ular finite Markov chains [46], it exists a value p so that
lim

t→∞
p(t)

k = p∀k ∈ {1, . . . , m}, i.e., the preferences expressed

by m experts converge to the same value p. By extending this
result (that regards a generic preference belonging to a FPR) to
the whole FPR, we can say that, if conditions are met, all the
FPRs P (t)

k for k ∈ {1, . . . , m} converge to the same FPR.
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